Material with increased band gap design could make electronics faster and more efficient

Celebrity Gig
Researchers in the Quantum Materials Design and Synthesis Group (from left to right) Zhifei Yang, Bharat Jalan, and Fengdeng Liu who worked to create a new material to help improve the next generation of high-power electronics. Credit: Kalie Pluchel/University of Minnesota. Kalie Pluchel/University of Minnesota

Researchers at the University of Minnesota have achieved a new material that will be pivotal in making the next generation of high-power electronics faster, transparent and more efficient. This artificially designed material allows electrons to move faster while remaining transparent to both visible and ultraviolet light, breaking the previous record.

The research, published in Science Advances, marks a significant leap forward in semiconductor design, which is crucial to a trillion-dollar global industry expected to continue growing as digital technologies expand.

Semiconductors power nearly all electronics, from smartphones to medical devices. A key to advancing these technologies lies in improving what scientists refer to as “ultra-wide band gap” materials. These materials can conduct electricity efficiently even under extreme conditions. Ultra-wide band gap semiconductors enable high-performance at elevated temperatures, making them essential for more durable and robust electronics.

In this paper, the researchers looked at creating a new class of materials with increased “band gap,” enhancing both transparency and conductivity. This unique achievement supports the development of faster, more efficient devices, paving the way for breakthroughs in computers, smartphones, and potentially even quantum computing.

READ ALSO:  Invisible disabilities in social VR: To disclose or not?

The new material is a transparent conducting oxide, created with a specialized thin-layered structure that enhances transparency without sacrificing conductivity. As technology and artificial intelligence applications demand ever-more capable materials, this groundbreaking development offers a promising solution.

“This breakthrough is a game-changer for transparent conducting materials, enabling us to overcome limitations that have held back deep ultra-violet device performance for years,” said Bharat Jalan, Shell Chair and Professor in the University of Minnesota’s Department of Chemical Engineering and Materials Science.

The work not only demonstrates an unprecedented combination of transparency and conductivity in the deep-ultraviolet spectrum but also paves the way for innovations in high-power and optoelectronic devices that can operate in the most demanding environments, Jalan explained.

READ ALSO:  Researchers focus on essentials, addressing inherent issues of solid-state batteries

The study’s first co-authors Fengdeng Liu and Zhifei Yang, chemical engineering and materials science Ph.D. students working in Jalan’s lab, said they proved that the properties of the material were almost too perfect to believe for these electronic applications. They ran multiple experiments and eliminated defects in the material to increase its performance.

“Through detailed electron microscopy, we saw this material was clean with no obvious defects, revealing just how powerful oxide-based perovskites can be as semiconductors if defects are controlled,” said Andre Mkhoyan, a senior author on the paper and Ray D. and Mary T. Johnson Chair and Professor in the University of Minnesota Department of Chemical Engineering and Materials Science.

READ ALSO:  New taxes will raise FCT revenue by 60% – Chair

In addition to Jalan, Liu, Yang, and Mkhoyan, the team included Silo Guo from the University of Minnesota’s Department of Chemical Engineering and Materials Science and David Abramovitch and Marco Bernardi from the California Institute of Technology’s Department of Applied Physics and Materials Science.

More information:
Fengdeng Liu et al, Deep-ultraviolet transparent conducting SrSnO3 via heterostructure design, Science Advances (2024). DOI: 10.1126/sciadv.adq7892

Provided by
University of Minnesota


Citation:
Material with increased band gap design could make electronics faster and more efficient (2024, November 8)
retrieved 11 November 2024
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Categories

Share This Article
Leave a comment