AI-powered intrusion detection system outperforms traditional methods in securing IoT networks

Celebrity Gig
Infrastructure of the RT_IoT2022 Dataset. Credit: Data Science and Management (2025). DOI: 10.1016/j.dsm.2025.02.005

As Internet of Things (IoT) devices proliferate in sectors like smart cities, health care, and industrial systems, they have become prime targets for cyberattacks such as Distributed Denial of Service (DDoS), ransomware, and botnets. However, traditional security methods struggle to cope with these attacks due to the limited computational power of IoT devices and the dynamic nature of cyber threats.

Anomaly-based intrusion detection systems, which identify deviations from normal behavior, have emerged as a promising solution. However, these systems often face challenges such as high computational costs and an increased rate of false positives. This calls for the development of more efficient, scalable, and accurate IDS tailored specifically for the unique constraints and challenges of IoT environments.

Published in Data Science and Management, a team of researchers from Al Yamamah University and Ecole nationale Supérieure d’Informatique introduced a novel intrusion detection system (IDS) that integrates PSO-optimized machine learning and deep learning models. The system, tested on the RT_IoT2022 dataset, demonstrated exceptional accuracy in detecting and classifying IoT intrusions.

READ ALSO:  Whole Foods corporate layoffs planned: Read the memo here

CatBoost emerged as the leading model, achieving 99.85% accuracy, setting a new benchmark in IoT security. The study underscores the potential of bio-inspired algorithms like particle swarm optimization (PSO) to enhance the efficiency and effectiveness of cybersecurity solutions in resource-constrained IoT networks.

AI-powered intrusion detection system outperforms traditional methods in securing IoT networks
Flowchart of the Proposed Framework. Credit: Data Science and Management

The study’s innovation lies in its hybrid approach, where PSO optimizes feature selection, reducing computational overhead while maintaining high accuracy. Six models—SVM, KNN, CatBoost, Naive Bayes, CNN, and LSTM—were evaluated, with CatBoost excelling in both binary classification (99.85% accuracy) and multiclass classification (99.82%), outperforming other methods such as QAE-f16 by 2.6%. The RT_IoT2022 dataset, which includes real-world attack scenarios like ARP poisoning and DDoS, served as a robust testing ground.

Notably, PSO helped reduce SVM training time by 23x with minimal loss in accuracy, addressing the resource limitations of IoT devices. However, challenges remain, such as misclassifying rare attacks like NMAP FIN scans due to dataset imbalance, highlighting areas for future refinement.

READ ALSO:  FG, politicians ran oil sector into crisis – Report

Dr. Mourad Benmalek, the study’s corresponding author, highlighted the significance of their findings, stating, “Our PSO-enhanced framework not only achieves unprecedented accuracy but also optimizes resource usage, making it practical for real-world IoT deployments. CatBoost’s outstanding performance showcases the potential of gradient boosting in cybersecurity, while PSO’s efficiency opens doors for lightweight IDS solutions that are ideal for IoT environments with limited resources.”

The implications of this IDS framework are vast, extending across industries reliant on IoT, including health care, smart grids, and industrial automation. By minimizing false positives and computational costs, the system enables scalable, real-time threat detection, which is crucial for industries that rely on continuous, uninterrupted service. Organizations can enhance regulatory compliance, safeguard sensitive data, and build customer trust through robust cybersecurity measures.

READ ALSO:  The impact of electrifying heavy-duty vehicles on the grid

Future research may focus on exploring hybrid models and improving real-time adaptability, further enhancing IoT defenses against evolving threats. This study sets a new benchmark for ML/DL applications in cybersecurity, providing a vital step toward stronger IoT protection in the face of increasingly sophisticated cyberattacks.

More information:
Mourad Benmalek et al, Particle swarm optimization-enhanced machine learning and deep learning techniques for Internet of Things intrusion detection, Data Science and Management (2025). DOI: 10.1016/j.dsm.2025.02.005

Provided by
Chinese Academy of Sciences


Citation:
AI-powered intrusion detection system outperforms traditional methods in securing IoT networks (2025, April 16)
retrieved 16 April 2025
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Categories

Share This Article
Leave a comment