Hydrogel material weaves seeds into textiles

Celebrity Gig
A touch-sensing hairband is among the potential applications for LivingLoom, a design inquiry and fabrication approach integrating living plants into textiles. Other applications include a self-caring hat, a garden pillow, a Rattan woven bag and outdoor activity-encouraging sandals. Credit: Hybrid Body Lab/Provided

Humans’ relationships with plants is largely utilitarian, serving our needs. We generally either eat them or make things out of them.

Researchers in the College of Human Ecology (CHE) have developed a design and fabrication approach that treats these living things as companions to humans, with seeds woven into hydrogel material for hairbands, wristbands, hats and sandals, among other applications. The seeds grow into sprouts if taken care of properly.

“For most of human history, we have lived alongside plants, and they’ve been leveraged by humans to be used as food or spun into yarns for fabric,” said Cindy Hsin-Liu Kao, associate professor of human centered design (CHE).

“We’re really interested in thinking about what it might mean if we could design a more mutual, collaborative relationship with plants. Could this help us reimagine our relationships with the environment, toward more sustainable futures?”

Jingwen Zhu, doctoral student in human behavior design, is lead author of “LivingLoom: Investigating Human-Plant Symbiosis Through Integrating Living Plants Into (E-)Textiles,” published April 25 and presented by Zhu at the Association for Computing Machinery Conference on Human Factors in Computing Systems (CHI ’25), held April 26–May 1 in Yokohama, Japan. The work won a Best Paper award at the conference, an honor reserved for the top 1% of submissions.

LivingLoom is an extension of a prototyping approach called EcoThreads, developed in Kao’s Hybrid Body Lab. EcoThreads involves two fabrication methods—wet spinning and thread coating—to fabricate functional threads from biomaterials.

READ ALSO:  Tech startup culture is not as innovative as founders may think






Credit: Cornell University

In wet spinning, polymers are extruded into a coagulation bath, where the polymer solidifies into fibers. The key difference in LivingLoom: Chia seeds are incorporated into the spinning solution, a hydrogel, so that the resulting yarn contains seeds that will grow when properly cared for.

The seed-integrated yarns are then woven into textiles using a digital Jacquard loom, used to design of novel textile structures that allow for water retention and root support. Through this process, the seeds are prepared with nutrients, growing space and water, and will grow in plant-integrated textiles.

Kao and her group conducted a diary-based user study to explore how people would wear and care for plant-infused textiles in everyday settings. The researchers recruited 10 participants to wear a LivingLoom wristband for three days and chronicle their observations. The experiment was conducted in late summer, so the participants could wear short sleeves while taking part.

Participants were asked to wear the wristband for two to eight hours a day for three straight days, after which they returned the bands and were interviewed by the research team. When the user took off the device, they put it in a container to protect the growing plants.

READ ALSO:  GPS jamming? No problem, low Earth orbit satellites hold the key to resilient, interference-free navigation

According to Zhu, several of the participants said they had experience caring for houseplants, but “this was the first time it was a wearable, so the proximity was very close and it actually established a very intimate relationship” with the plant. Others described the symbiosis between themselves and the plant; when the plant needed water, for example, they would also get a drink.

Participants would also see parallels in the morning, after a good night’s sleep.

Hydrogel material weaves seeds into textiles
User study apparatus and caring kit. Credit: Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (2025). DOI: 10.1145/3706598.3713156

“They would put the plants back in the container at night,” Zhu said, “and in the morning they’d notice that the plants had grown taller. It was similar to how they would feel recharged by getting enough rest.”

Kao said that while houseplants grew in popularity during the pandemic as people were spending more time at home, the proximity between the wearer and LivingLoom makes the relationship stronger. “You have these living plants, these living things, directly on the skin surface and I think we seldom have that experience,” she said.

The relationships became emotional for some participants, Zhu said.

“One participant said they felt connected when they woke up and saw the sprouts growing really well,” she said. “And one participant said she felt really sad when one of the sprouts fell off, because it’s so close to her body and it made her feel strongly connected.”

READ ALSO:  Founder who sold his startup to Google says the company has lost focus

Of the other potential applications for LivingLoom, Zhu said, “A lot of people felt that the hat and the hairband makes a lot of sense because it’s an area where people naturally wear decorative accessories, they don’t really interfere with activity that much, and it’s naturally exposed to sunlight.”

Kao said LivingLoom could have digital agricultural and food science applications, as well. “In addition to seeds, we can weave in digital traces and yarn-embedded sensors that could be used for automatic soil condition monitoring, for example,” she said. “There is rich potential for use cases—not only on the wearable scale, but also for our environment.”

Other co-authors are Samantha Chang ’26 and Ruth Zhao, an undergraduate at the University of Pennsylvania.

More information:
Jingwen Zhu et al, LivingLoom: Investigating Human-Plant Symbiosis Through Integrating Living Plants Into (E-)Textiles, Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (2025). DOI: 10.1145/3706598.3713156

Provided by
Cornell University


Citation:
Plants you can wear: Hydrogel material weaves seeds into textiles (2025, May 5)
retrieved 5 May 2025
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Categories

Share This Article
Leave a comment